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Deformation in cooperative molecular motors
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Abstract. We implement a model to represent the effect of the deformation of the backbone of a system
of motor proteins while sliding on a track filament. This model incorporates a nearest neighbor interaction
term among the motors for the deformation energy. Correlations induced by this term result in increased
motor force for inter-particle distances small compared to the ratchet period.

PACS. 87.15.-v Biomolecules: structure and physical properties – 87.15.Aa Theory and modeling;
computer simulation – 87.16.Nn Motor proteins

1 Introduction

The complex phenomenon of muscle contraction can be
modeled in simple terms via the investigation of the sub-
ject molecular motors. These molecular motors, acting
cooperatively yield the motion which governs the mus-
cle contraction phenomenon in some living organisms. In
this respect, cooperative molecular motors have been sub-
ject of interest and the relation between several dynamic
quantities such as force-velocity relations have been inves-
tigated [1–6]. These systems may be modeled as in rela-
tive motion with respect to a track along micro-tubules.
The multi-motor filament moves along these micro-tubules
that has a ratchet potential built into it. It is interesting
that directed motion comes along with the introduction
of this “ratchet” potential even when it is spatially sym-
metric [7]. In the presence of a symmetric saw-tooth po-
tential, the directed motion can still be maintained via
the Adenosinetriphosphate (ATP) regions on the track.
The function of these regions is to break the detailed bal-
ance and thus create a dynamical instability. This leads
to spontaneous symmetry breaking due to the asymmet-
ric motor protein distribution on the track filament and
results in sustained motion. Several generalizations of the
original models [1,4,7] such as those incorporating an elas-
tic coupling of motor molecules to a rigid backbone and
elastic coupling to the environment have been proposed
for study [1]. Elastic coupling to the environment has been
modeled by the connection of the rigid filament backbone
to the outside environment via a spring-like force. This
model has been used to explain the oscillations occur-
ring in the muscle of some insects [7]. Deformation phe-
nomenon stems from internally generated forces which so
far has been examined as axonemal deformations [8–10].
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The elastic coupling of the motors to the backbone men-
tioned above, has been studied separately, which in fact
is also related to the generation of internal forces. On the
other hand, the attachment of the motors to a rigid back-
bone via springs can be used to study the effects of the
elasticity of the motor material itself. The effect of dis-
tance variations between motors on the force-velocity re-
lations was studied in references [2,3]. The deformation
was described in terms of a harmonic potential with and
without strain-dependent detachment rate.

In this present work, we study the effects of the de-
formation of the backbone material with motors particles
connected to this backbone. The energetics of the defor-
mation is included through an Ising-like model as will be
described below. The backbone then may be assumed to
be composed of motors which can be in one of the energy
levels of the well-known two state system [1,4,7]. The en-
ergetics of the deformation enhance the the correlations
in the states of neighboring particles, which in turn influ-
ences the collective motor properties.

2 The model

The model is based on a triangular symmetric saw-tooth
potential for the track filament of the motor and a higher
constant potential for the backbone (Fig. 1). Here, E1(x)
and E2 are the ratchet potential [11] and the constant po-
tential respectively. The energy of the system is given by:

H =
∑
i
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Fig. 1. A diagram of the E1(x) and E2 potentials. The width
of the region where ATP excitation occurs is d = 0.1 and U0

is the height of the ratchet potential.

where ε/4 is a positive constant which denotes the ampli-
tude of the potential representing the deformation energy.
Si indicates the state of the ith particle with Si = 1 for
the detached and Si = −1 for the attached states and the
sum over 〈ij〉 indicates a summation over all nearest neigh-
bor pairs. One should note that the deformation energy is
increased by an amount ε/2 when the adjacent particles
are in different states (springs stretched) in comparison
to the case when they are in the same state (springs not
stretched).

In our generalization of the model, the major effect
of the deformation is assumed to be related to the states
of the particles (i.e. attached or detached). Admittedly,
a deformation might correspond to a displacement of the
particles relative one another in the direction of the motor
motion. In this work, we are considering a limit in which
such relative displacement results in small changes in en-
ergy and hence in the transition rates in comparison to
the changes resulting from being in attached or detached
states.

We carry out a Monte Carlo simulation of this system
using the dynamics given by the transition rates [4,7,5]:

ω1(i) = ω2 exp
[
(ε
Si+1 + Si−1

2
+E1(xi)−E2)/kT

]
+Ω(xi) (2)

where ω1(i) is the transition rate for the ith particle from
the attached state to the detached state. The transition
rate for the reverse process ω2 is chosen as 1 and defines
the time scale. Note that Ω(xi) destroys the detailed bal-
ance and represents the ATP excitations [4]. This effect is
assumed to be present at certain regions on the track, as
shown in Figure 1. We will call Ω as “the excitation am-
plitude” for consistency with previous work [4]. We take
Ω = 10 a value sufficiently large compared to the time

scale defined by ω2. Note that, k and T are the Boltzmann
constant and temperature respectively. The functioning of
the motor relies on the release of energy from the parti-
cles to one side of the potential ramp, while they are being
detached from the other side by the excitation. Motion of
a motor makes it more probable to release its energy on
the side of the potential ramp which enhances the motion
in that direction. This leads to a dynamic instability and
hence a spontaneous velocity. The correlations generated
by the deformation energetics result in more of the excited
motors reaching the “other side of the ramp”, which yields
a better collective motor performance for some range of
parameters. On the other hand, these correlations make
an analytical analysis of this system prohibitively compli-
cated.

3 Calculation

The numerical computation was started by assigning the
motor an initial velocity. The motor is assumed to consist
of 1000 particles separated by an amount ∆x on a ratchet
potential with spatial period L. The force acting on the
protein was then calculated at each time step. The total
collective motor force (Fmot) due to potentials indicated
in Figure 1 is determined by adding up the forces for both
attached and detached particles (the force on a detached
particle is trivially zero whereas the force on an attached
particle is negative the slope of the model symmetric saw-
tooth potential). The protein is moved at the initial con-
stant velocity, and the force acting on the individual mo-
tors is averaged over. The inter-particle distance ∆x is
irrationally related to L so that the distribution of mo-
tors is incommensurate with L. This guarantees that for
a sufficiently long filament the motors will be distributed
uniformly over the potential period and therefore the force
will be constant. The state of the motors was changed at
each time step by the following procedure: the total prob-
ability of any transition in a time interval ∆t is calculated

P = ∆t
n∑
i=1

ω(i) (3)

where ω(i) is the transition rate of the ith motor in the
system (ω(i) is either ω1(i) or ω2 depending on the state
of the ith motor). The time step ∆t is chosen such that
the total probability P is much less than 1 so that the
probability of more than one transition in ∆t is negligi-
bly small. In order to comply with this constraint Fmot is
calculated through averaging 105 time steps of ∆t = 10−3

after the system is sufficiently relaxed, except forlarge val-
ues of ε where averaging is done through 106 time steps of
∆t = 10−4. Whether or not a transition will take place is
decided at each time step with probability P . The partic-
ular state which will go through the transition is chosen
randomly with a probability proportional to its transi-
tion rate. In order to use unitless quantities, we scale the
lengths by the period of the ratchet potential L, the en-
ergies by the magnitude of the symmetric saw-tooth po-
tential U0 and the masses by the mass of a particle M .
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Fig. 2. The velocity dependence of the Fmot for ε = 0 (solid),
ε = 4 (dot-dashed), ε = 8 (long dashed) for inter-particle dis-
tance ∆x =

√
2/16.

The time variable is then scaled by
√
ML2/U0. We have

chosen the energy of the detached state as E2/U0 = 2,
and kT/U0 = 1. The inter-particle distance ∆x is chosen
as
√

2/4 which is typically around 0.24 for kinesin given
that the motor density is 5 × 108 m−1 [8] and potential
period is 8.2 nm for kinesin [13].

The force developed by the motors as a function of v
for different values of ε is shown in Figure 2. For interme-
diate values of ε, the introduction of correlations results in
enhancement of attached and detached particle domains
in accordance with the states the adjacent particles are in.
For small values of ∆x, these adjacent motors are more
likely to be on the same ramp. For very large values of ε
however, ATP excited adjacent motors tend to “stick”
to their excited states so that the mechanism generating
the motor force is now blocked. It should be remembered
that this force is balanced by two other forces, a “friction
force”, which is usually taken to be proportional to the ve-
locity Ff = −λv and an “external force” Fext, which may
be present due to possible external effects. The friction
force may be trivially subtracted from our results in Fig-
ure 2 to obtain the external motor loading as a function
of velocity in the form Fext = Fmot − λv. As can be seen
from Figure 2, the friction coefficient λ cannot be larger
than a critical value λc for any particular value of ε, if the
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Fig. 3. The critical value of λ, λc versus the interaction am-
plitude ε for ∆x =

√
2/16.

system is to function as a motor (i.e. Fext ≥ 0) [4]. That
is, in order to get a non-zero stable solution, λ will have
to be smaller than λc, which is the slope of the tangent to
the Fmot versus velocity curve at the origin. These critical
values of λ are displayed as a function of ε in Figure 3.

4 Discussion

According to Figures 2 and 3, we see that “maximum col-
lective motor force” Fmax, and λc increase with the in-
crease of ε. But, for larger values of ε we see a drop in
both Fmax and λc since the immense increase in the cor-
relation spurs attached particles to the upper constant
energy level which inhibits force generation as was men-
tioned previously. The decrease in velocity at Fmax as cor-
relation increases is not surprising since the increase in ε
enables the particles to remain in their excited states for
a longer time. This energy can then be supplied to the
motor especially if it travels with a lower velocity.

The inter-particle distance dependence of Fmax, for dif-
ferent ε values is displayed in Figure 4. For non-zero ε and
small values of ∆x, the inter-particle distance, Fmax in-
creases, while for the values of ∆x around half the spatial
period Fmax decreases. This is in contrast to the ε = 0
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Fig. 4. The inter-particle distance dependence of Fmax for
ε = 4 (circle), ε = 1 (small filled-square) and ε = 0 (plus). We
have extended the plot beyond the expected period of ∆x = 1,
as a check of our computation.

case where Fmax stays constant as expected because, the
particle distribution is uniform and incommensurate in the
absence of correlations. The size of the fluctuations in Fig-
ure 4 gives an idea about the magnitude of the systematic
errors due to finite length of our system.

The population of the particles in the attached states is
shown in Figure 5. It is seen that the population pattern is
deformed for larger inter-particle distances. To understand
the multiple peaked structure of the ∆x =

√
2/4 graph,

consider the problem of arranging three adjacent parti-
cles to obtain a maximum amount of force. For this inter-
particle distance one cannot have all three adjacent par-
ticles attached to the symmetric saw-tooth potential so
that all three experience a positive force. This explains
why Fmax decreases for values of ∆x around half the spa-
tial period in Figure 4. At the same time, Fmax increases
for small values of ∆x in Figure 4, since one can have
all three adjacent particles experiencing a positive force
due to the symmetric saw-tooth potential. Now, for inter-
particles distance ∆x =

√
2/4, there are three intervals

for the central particle in which two of the three particles
experience a positive force while avoiding the ATP present
regions [14]. We expect to see a population growth in these
intervals so that the motor attains Fmax. Indeed, Figure 6
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Fig. 5. Population versus spatial coordinate of particles at-
tached to the ratchet potential at maximum motor force and
for inter-particle distances ∆x =

√
2/16 (solid) and

√
2/4

(dashed) with ε = 4.

shows how this results in three peaks which are responsi-
ble for the deformation shown in Figure 5. One can also
see that the overwhelming contribution to the total force
comes from triplets of neighboring motors all in attached
states.

The ε dependence of Fmax is studied in Figure 7 which
simply summarizes the dynamics of the system exam-
ined earlier. The error bars in Figure 7 have been deter-
mined through a somewhat optimistic estimate, dividing
the mean square fluctuations of the measured quantity
by the square root of the number of independent samples
in the average. This number has in turn been estimated
as the total simulation time divided by 3/Ω, which is one
of the time scales in the system. In particular, systematic
errors which may be the result of the finite size of the
system are expected to be small and not included in this
analysis.

We have also looked at the efficiency of the process, as
defined by the ratio of power delivered by the collective
motor to the total power supplied by the ATP excita-
tion [1]. Consistent with our other results we find that the
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Fig. 6. Population versus spatial coordinate of a central
particle of a triplet of neighboring particles all attached to
the ratchet potential (solid), and with the central particle
attached while both of the neighbors detached (dot-dashed)
at maximum motor force. Inter-particle distance ∆x =

√
2/4

and ε = 4.

efficiency of the finite ε collective motor is larger than that
for ε = 0 at smaller values of the velocity.

We conclude that deformation energy brings signifi-
cant modifications and a richer structure and may yield a
“better” motor for some range of parameters.

MCY acknowledges research support from Turkish Academy
of Sciences.
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8. S. Camalet, F. Jülicher, New J. Phys. 2, 24 (2000),
physics/0003101 30 Mar 2000.

9. S. Camalet, F. Jülicher, J. Prost, Phys. Rev. Lett. 82,
1590 (1999).
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